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Abstract. We explore the discovery and analysis potentials of the HERA collider, with and without polar-
ized beams, searching for electron-quark contact interactions in the neutral current channel. We find that
the sensitivity to contact interactions when both beams are polarized is similar to the unpolarized case,
and is better than in the case where one has only lepton polarization. We emphasize that the measurement
of spin asymmetries in such a polarized context could give some crucial information on the chiral structure
of these postulated new interactions. The experimental conditions are carefully taken into account.

1 Introduction

It is commonly assumed that the Standard Model (SM) is
only a low energy effective theory of a more fundamental
and complete theory, which will be able to resolve natu-
rally several problems inherent to the SM. For instance,
as a non-exhaustive list of these difficulties let us men-
tion: i) the scalar structure of the SM: nature of the Higgs
boson and origin of the electroweak symmetry breaking;
ii) the huge number of SM free parameters to be fixed by
experiments; iii) the origin of parity violation for weak in-
teractions; iv) the origin of the SM three generations, i.e.
of the apparent replication of quarks and leptons. Besides,
the ultimate unification of all particles and of all interac-
tions is still an essential aim of particle physicists. There-
fore, it is natural to have several models or theories which
go beyond the SM, in order to satisfy this unification goal
and to resolve simultaneously some problems of the SM
such as those mentioned above. The models derived from
String theories and/or the Grand Unified Theories lead, in
general, to the unification of the interactions. Elementary
particles unification leads us to suppose that there is a
deep unity between quarks and leptons and also between
fermions and bosons, leading to the ideas of substructure
and/or of supersymmetry.

A prediction common to all of these models is the ex-
istence of new exotic particles, and, in particular, of new
bosons (i.e. Z ′, vector and scalar leptoquarks, superpart-
ners ...). In the case of compositeness no particular models
have emerged so far and the substructure energy scale Λ is,
in general, not directly accessible at present nor presently
planned for high energy collider experiments. However,
phenomenologically at some energy scale, much lower than
the characteristic scale of the underlying interaction, the
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presence of common subconstituents follows by assuming
a Contact Interaction (CI) [1,2], independent of the de-
tails of the model. Moreover, it appears that the exchange
of a new boson in an SM process can also be represented
by a CI, if the boson mass M is far above the center of
mass energy of the elementary process (i.e. M � √ŝ). To
the best of our knowledge, for lq → lq scattering, this
was first noticed in [3,4], and taken into account recently
in [5,6].

Therefore, the study of CI is a powerful way to probe
new physics phenomena in general. The connexion be-
tween CI and compositeness is direct. For a new exchanged
particle such as an SM-like boson (i.e. Z ′, W ′) or a lepto-
quark-like boson (scalar or vector leptoquarks, some
sfermions with R-parity violating couplings), the connex-
ion is indirect in the sense that we do not consider the
resonant effect.

The aim of this article is to present a purely phe-
nomenological analysis on the experimental signatures of
CI from the measurements of cross sections and spin asym-
metries in the Neutral Current channel for lepton-proton
collisions at HERA1. This work complements previous re-
ports [7–9], takes into account realistic experimental con-
ditions and extends the former analysis to the two-spin
case, namely when both lepton and proton beams are
simultaneously polarized. The lepton polarization option
was considered at an early stage of the HERA project (see
for example [10,11]) and it is already in use at DESY with
the HERMES experiment [12]. The proton polarization
option at HERA [13] has been considered only recently,
although it was motivated all along by a 1997 workshop
[15], where the main results of the present analysis have
been published [16].

1 For an unpolarized analysis in the Charged Current sector
at HERA see [4]
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Consequently, we will be interested in CI which belongs
to the electron-quark sector. The conventional effective
Lagrangian has then the form [7]:

LNC
eq =

∑
q

(ηq
LL(ēLγµeL)(q̄LγµqL)

+ηq
RR(ēRγµeR)(q̄RγµqR)

+ηq
LR(ēLγµeL)(q̄RγµqR)

+ηq
RL(ēRγµeR)(q̄LγµqL)) (1)

with ηq
ij = εg2/(Λq

ij)
2 , where q indicates a quark flavour,

i, j correspond to different chiralities, Left (L) and Right
(R), respectively, and ε = ±1 is a sign which characterizes
the nature of the interferences of the contact terms with
SM amplitudes. The coupling constant g is normalized to
g2 = 4π, since such CI have been initially invoked for
compositeness studies, where the new binding forces are
assumed to be strong.

If we restrict ourselves to the light quark flavours of
the first generation (i.e. q = u, d), we find that there are
eight independent terms appearing in (1). In fact, we can
reduce the number of independent coefficients by the use
of symmetries. For instance, the SU(2)L symmetry indi-
cates the relation2 ηu

RL = ηd
RL [8,5,2]. If we require the

presence of some higher symmetries, we will obtain similar
relations among the η coefficients. The interested reader
can find more details in [5,18]. Here, we will not consider
any particular symmetry in order to perform a “model in-
dependent” analysis. Nevertheless, for simplicity, we will
assume some “universality” between the u and d quarks
contributions, namely ηu

ij = ηd
ij = ηij . However, as long

as a proton beam is used at HERA, one tests essentially
the structure and interactions of the u-quark, and more
precisely its valence component.

With the assumption of “u-d universality”, the four
“chiralities” LL, RR, LR and RL, along with the sign ε,
define eight individual models (associated to eight distinct
behaviors). The CI could correspond to one of these mod-
els or to any combination of them. From now on, we label
each individual model by its non zero ηε

ij coefficient, as-
sociated to the “chirality” IJε, where we have added ε as
an index for clarity.

The contact terms are constrained by several experi-
ments involving electron-quark interactions, such as, for
instance, unpolarized and polarized deep inelastic scatter-
ing, Drell-Yan lepton pairs production, atomic parity vio-
lation and hadron production in e+e− collisions. A global
study of the eq CI for these processes, with the corre-
sponding constraints on Λ, has been performed in [5]. In
particular, the atomic parity violation experiments on Ce-
sium atoms give some bounds of the order of Λ ∼ 10 TeV
for the individual models [5,19]. However, it appears that

2 Note that recently it has been advocated [17,18] that the
invariance under this symmetry also imposes ηu

LL = ηd
LL, but

this relation is no longer valid, if we consider the most general
SU(2) × U(1) invariant contact term Lagrangian, due to the
presence of an isospin triplet exchange term [8,5]

it is easy to find some combinations of the chiralities which
evade these constraints. The symmetries, which are able
to realize such cancellations, do not necessary correspond
to Parity Conserving (PC) interactions [18]. At this point,
it is interesting to remark that in the framework of com-
posite models, some naturalness arguments [20] indicate
that the composite strong dynamics has to respect some
unbroken chiral global symmetries, which leads to Parity
Violation for the new interaction [2]. Moreover, the fact
that the new interaction is Parity Violating (PV) seems
to be natural in the sense that the new energy scale Λ
is above the characteristic energy scale v ∼ 246 GeV of
weak interactions, namely in an energy domain where SM
PV interactions are already present [2]. In addition, if we
examine the fermionic couplings of the different Z ′ usually
involved in traditional searches (see [21] for a review), we
can see that they are of PV nature, in general.

Coming back to the experimental bounds on Λ, we
have noticed that the individual models are severely con-
strained, which is not the case when several terms of dif-
ferent chiralities are involved simultaneously. In this lat-
ter case, the authors of [5] found that the present bounds
on Λ are of the order of 3 − 4 TeV . Note also that the
constraints originating from atomic parity violation ex-
periments, could also be relaxed if there are compensat-
ing contributions coming from more than one new physics
source [22]. Nevertheless, for simplicity, in the following
analysis we will consider the eight models individually.
We will comment on the effects of some models with a
more complicated chiral structure at the end of the last
section.

Finally, the H1 and ZEUS collaborations at HERA
have observed an excess of events, in comparison with
the SM expectations, at high Q2, in the deep inelastic
positron-proton cross section σ+ ≡ dσ/dQ2(e+p→ e+X)
[23]. Many explanations have emerged, since these obser-
vations (see [24] for a nice review). This excess could be
interpreted as a manifestation of new physics: leptoquarks,
squarks with R-parity violation (Rp/ ) or CI. In this latter
case, up to some difficulties [24], it corresponds to a new
interaction in the up-quark sector for a scale Λ ∼ 3−4 TeV
[25,17,24]. Since the lepton beam is made of positrons,
the cross section σ(e+p) is sensitive to the chiralities LR±
and/or RL± where ± corresponds to ε. We can remark
that the required Λ for the HERA excess of events, is close
to the present sensitivity of the other experiments studied
in [5]. However, it appears that with the new data [26]
“the evidence for the signal remains meager” [24]. There-
fore, we do not insist anymore on this anomaly. We will
just present the different curves of our analysis for the
“special” value Λ = 4TeV .

We will present in Sect. 2 our strategy of analysis and
the relevant experimental parameters. In Sect. 3 we will
define the most powerful observables and discuss the dis-
covery reaches on the CI scale Λ. At this stage, we will
consider three different running experimental conditions:
i) unpolarized, ii) lepton polarization only (one-spin), iii)
lepton plus proton polarizations (two-spin). In Sect. 4 we
will present a strategy which could be helpful to strongly
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constrain the chiral structure of the possible new interac-
tion. We give our conclusions in Sect. 5. In Appendix A
we define the doubly polarized cross sections, along with
the expected behavior of the most relevant observables
involved in this analysis. In Appendix B we present an
efficient way to take into account the degrees of beam po-
larization involved in any polarized experiments, and to
define correctly the different spin asymmetries and their
associated statistical errors.

2 Observables and experiments

2.1 Preamble

The effective Lagrangian described by (1) is added to the
SM one, and allows the calculation of the differential in-
clusive cross section dσt

λeλp/dQ2 for the polarized deep
inelastic scattering process:

e tp→ etX , (2)

where t is the electric charge of the colliding lepton, and
λe, λp are the helicities of the lepton and the proton. We
have performed the integration over the x variable in or-
der to increase the statistics, since we are concerned with
the high Q2 domain. Another reason to do that comes
from the fact that an effect due to a CI will present a
continuum in the x-distribution3. The expressions for the
doubly polarized differential cross sections are presented
in Appendix A.

Now, since we have defined the basic observable
dσt

λeλp/dQ2, we can go into the details of our analy-
sis. This study is divided into three parts, corresponding
to three different modes of running for the HERA ma-
chine. The first one is operating presently, the others are in
preparation: i) Unpolarized; ii) Lepton polarization only
(e− and e+) (one-spin); iii) Lepton and proton polariza-
tions (two-spin). We also define several classes of observ-
ables: the cross sections (called σ) and the spin asymme-
tries. The “pure” spin asymmetries, defined for each type
of lepton separately, are denoted A. If both electron and
positron beams are available, we can define a third class
of observables: the charge asymmetries (called B). We put
in this class the “mixed” asymmetries which are simulta-
neously spin and charge asymmetries.

In principle, it should be possible to achieve the same
degree of polarization for e− and e+ beams. However some
technical problems may arise and it could be interesting
to know the separate information coming from each lep-
ton channel. Further, we have decomposed our results into
four classes: i) only the e− beam is polarized; ii) only the
e+ beam is polarized; iii) both e− and e+ beams are po-
larized, but we take into account only the pure spin asym-
metries A; iv) both e− and e+ beams are polarized, but

3 For a leptoquark or a Rp/ -squark of accessible mass at
HERA, the x-distribution will be crucial to observe the reso-
nance effect, since such particles are produced in the s-channel

now we take into account all the possible spin and charge
asymmetries (A and B types). The distinction between
the last two possibilities has a technical origin. It comes
from the fact that we expect stronger systematic errors
for the B-like asymmetries than for the A-like ones (see
below).

2.2 Experimental parameters

We present in this subsection the parameters relevant to
our analysis. In order to preserve the clarity of the physical
results presented in the next section, we discuss here the
effects due to some reasonable variations of each parame-
ter. Consequently, this part is rather technical and could
be skipped in a first reading. Note also that the physical
results only have been given in [16].

• Energy:

We have chosen
√

s = 300 GeV , since it is the present
value for the HERA machine. The optimal choice

√
s =

314 GeV affects slightly our results, more precisely, the re-
sulting bounds have to be increased by roughly 2%. This
is in agreement with the scaling law [9,27]: Λlim ∼ (s.L)

1
4 ,

L being the integrated luminosity.

• Integrated luminosity:

We have considered the high luminosity option [13,15],
which corresponds to a “total” integrated luminosity Ltot

= 1 fb−1, for electrons (L−) plus positrons (L+). When
the beams are polarized, we have decomposed the respec-
tive luminosities according to the spin configurations in
order to keep Ltot constant, allowing us to make a realis-
tic comparison between the “discovery potentials” of the
three distinct 0,1,2-spin analyses; namely, it gives: i) un-
polarized: L− = L+ = 1 × 500 pb−1; ii) one-spin: L− =
L+ = 2×250 pb−1; iii) two-spin: L− = L+ = 4×125 pb−1.
In short, we take, for example, an integrated luminosity
of 125 pb−1 for the configuration e−(λe = +1) p(λp = +1)
associated to the cross section σ++

− , where we use the no-
tation σ

λeλp

t ≡ dσt
λeλp/dQ2.

The choice Ltot = 1 fb−1 could be too high, so we
have also considered the case where it is divided by a fac-
tor of two. It appears that the limits on Λ decrease by
about 15%, which is a little bit lower than the 4

√
2 factor

(∼ 19%) indicated by the scaling law mentioned above.

• Kinematic variables:

Concerning the y variable (defined in Appendix A), we
take the usual minimal cut [28] ymin = 0.01 (this choice
has almost no influence on our results). The maximal cut
is fixed to ymax = 0.95, a value which could be reached
experimentally in the future at HERA [29]. If we use the
present sensitivity [28] (i.e. ymax = 0.8), all the limits
decrease by 5 %.

Concerning the Q2 resolution and the corresponding
minimal cut we take the ones of the ZEUS collaboration
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[28]: ∆Q2/Q2 = 34.3 % and Q2
min = 200GeV 2. These pre-

cise choices have no visible impact on the results.

• Parton distribution functions:

For the unpolarized study we have used the following three
unpolarized parton distribution functions (pdf) sets: GRV
[30], MRS [31] and BS [32]. The Λ bounds are obtained
with the GRV set, but the other distributions give only
small differences.

For the polarized studies we have used again three po-
larized pdf sets: BS [32], GRSV [33] and GS96 [34]. How-
ever, the uncertainties in the polarized pdf’s are presently
much larger than in the unpolarized ones. These uncer-
tainties will be strongly reduced in the near future, thanks
to spin asymmetries measurements at the RHIC-BNL po-
larized pp collider [35], for photon, jet and W± produc-
tions [36].

Consequently, we have calculated the cross sections
and the asymmetries with one pdf set, then we have ob-
tained the bounds on Λ assuming that the uncertainties
due to the pdf will be weak when the polarized HERA will
be running. In other words, we have assumed that anoma-
lous effects due to new physics will not be diluted by the
uncertainties in the pdf’s.

The limits and the curves, which will be presented, are
obtained with the GRSV set, since it corresponds to the
most conservative choice. Indeed, for this set the (valence)
quarks are the more weakly polarized, in comparison to
the GS96 and BS sets, so it gives smaller spin effects and
also smaller bounds. Nevertheless, we can remark that the
variations on the Λeq bounds from the different pdf sets
(≤ 3%) are weaker in comparison to the variations on
the Λqq bounds obtained from jet productions in hadron-
hadron collisions (≤ 10%) [37,38].

• Degree of beam polarization:

From an experimental point of view, the particle beams
are never fully polarized. We have to introduce a degree
of polarization P for each beam. The first effect is to pro-
duce a “shift” between the magnitude of the asymmetries
defined theoretically (P = 1) and measured experimen-
tally (P 6= 1). This induces a problem of definition for the
statistical error. We will comment on this difficulty in a
susequent paragraph, and in more detail in Appendix B.
A second effect is related to the uncertainty in the pre-
cise value of P , which induces a systematic error for the
asymmetries.

In the following, we take for the degree of beam po-
larization of the charged leptons (Pe) and of the pro-
tons (Pp) the values which are in common use [13,15]:
Pe− = Pe+ = Pp = 70%. The choice Pall = 60% decreases
the bounds for the one-spin and the two-spin PV asymme-
tries by roughly 5−6%, and the ones for the two-spin PC
asymmetries by roughly 8%. The results from the fact that
the statistical errors of the PV asymmetries are propor-
tional to 1/P (see [39] for AL and (B.18) for APV

LL ), and
those of the PC asymmetries, are proportional to 1/P 2

(see (B.25)).

• Systematic errors on cross sections:

For the unpolarized cross sections, the systematic errors
are rather weak and of the order of 2 − 5% [28]4. The
main uncertainties come from luminosity measurements,
which produce an unknown normalization factor f [9,28].
In the present analysis, we do not take explicitly into ac-
count such a factor f and its related error ∆f(∼ 5%), as
in Martyn’s analysis [9,40], but we rather follow a proce-
dure which is also convenient for the study of the asym-
metries. Namely, we take an explicit systematic error on
the involved observable, which is added in quadrature to
the statistical error of the same observable. The resulting
total error is used in the χ2 function (defined below).

For instance, we have chosen the systematic errors in
the unpolarized cross sections to be ∆σunpol

syst /σunpol = 3%
for the entire Q2 domain. With this choice we recover to a
good accuracy the limits on Λ presented in [28]. However,
this difference in the analysis strategy in comparison to
[40], gives some discrepancies on the Λ bounds for destruc-
tive interferences (ε = −1), obtained from the analysis of
the unpolarized cross sections. For this special case, we
find some limits which are roughly 15− 20% higher than
the ones presented by Martyn in [40]. Nevertheless, we
have to remark that this discrepancy due to the strategy
for taking into account the systematic errors, disappears
in the polarized analysis, since this normalisation uncer-
tainty is irrelevant for an asymmetry, which is a ratio of
cross sections.

Concerning the polarized cross sections, there are some
additional systematic errors which are stronger in magni-
tude than for unpolarized cross sections. They arise, on the
one hand, from the uncertainties in the degree of polariza-
tion, and on the other hand, from variations in counting
rate due to time variations in detector efficiencies, beam
intensities, and crossing angles between the different spin
configurations (see [41] for more details on these system-
atics). These errors are addative, so it is difficult to have a
global estimate. This is the reason why we prefer to study
spin asymmetries, where these uncertainties largely can-
cel in the difference of cross sections, which occurs in the
numerator of these asymmetries.

Without systematic errors these polarized cross sec-
tions are the most sensitive observables to the presence of
new physics. However, this “power of discovery” is quickly
destroyed by systematic errors. Thus, it is irrelevant to
give some constraints on Λ coming from the study of po-
larized cross sections if we don’t have any estimate for
∆σpol

syst/σpol. In this spirit, we have estimated the values
for ∆σpol

syst/σpol, for which the bounds on Λ obtained from
the analysis of polarized cross sections are at the same
level as the ones obtained from the analysis of spin asym-
metries. It appears that they have to be of the order of 10
% (8 %) in the one-spin (two-spin) case.

4 There are some larger values in the low Q2 region due to
energy calibration [28], but we are not concerned with this
domain of Q2
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• Systematic errors on the asymmetries:

The use of asymmetries as observables in the analysis is
motivated by the minimisation of systematic errors. On
the one hand, the experimental systematic errors com-
pensate in the numerator, as we have noted just above.
On the other hand, the theoretical uncertainties in cross
sections, coming from higher order corrections, which are
expressed in general in term of a K factor, partially cancel
in the asymmetries [39], which are cross section ratios.

Unfortunately, these cancellations are not exact. More-
over, our numerical simulations are realized at the Leading
Order. Consequently, we have considered a global system-
atic error in the asymmetries of the order of 10%:

∆Asyst

A
=

∆Bsyst

B
= 10 %. (3)

This value is the one expected at HERA in the polarized
mode [41].

It appears that one can reduce this value by frequent
reversals of spin orientations, a method which will be used
at RHIC [35]. At HERA, it is difficult to flip the lepton
spin [41]. Hence, this procedure is not very helpful to re-
duce the systematic errors. Conversely, the spin flip of
the proton beam will be helpful and then we expect the
smallest systematic errors for the PC asymmetries, defined
below.

Concerning the charge asymmetries (B) we expect
stronger systematics (i.e > 10%), since we need data from
runs in the e− mode and in the e+ mode, which cannot
be done simultaneously.

Finally, we have considered the impact of the varia-
tion of this systematic error. It appears that the choice
∆Osys/O = 20% (O = A or B) decreases the bounds by
roughly 10-15%, the precise value depending on the in-
volved asymmetry.

• Statistical errors on the asymmetries:

When we take into account the degrees of polarization
of the beams, the definition of the statistical error of the
corresponding asymmetry may be ambiguous. For the spin
asymmetries which have been studied/measured until now,
such as the PV one-spin asymmetry AL (≡ ALR) or the
PC two-spin asymmetries APC

LL and A‖, defined in deep
inelastic scattering at low Q2, the difficulty for the defini-
tion of ∆Astat does not appear due to natural factorization
(AL, APC

LL ) or relevant assumptions (A‖). (These asymme-
tries will be defined in the next section or in Appendix B).
In this paper, we consider a large set of spin asymmetries,
where such natural factorizations do not generally hold.
Moreover, since we are concerned with the high Q2 do-
main, we cannot make some assumptions, such as parity
conservation relevant at low energy where, for instance,
A‖ measurements are realized.

However, this problem is relatively technical and we
prefer to insist on the physical results that will be pre-
sented in the next sections. We give the definition of
∆Astat in Appendix B.

• χ2 analysis:

The bounds on the scale Λ are obtained with a χ2 analysis,
where the SM is the reference. The χ2 function is defined
by:

χ2 =
∑
Q2

(OSM+NP (Q2) − OSM (Q2)
∆OSM (Q2)

)2

, (4)

where O is the involved observable, the indices SM and
SM + NP refer respectively, to the values taken by O in
the SM alone and in the SM with the New Physics (CI)
contributions. ∆O is the quadratic sum of the statistical
and systematic errors on O.

∑
Q2 corresponds to the sum

over all the Q2 bins defined in our analysis.
We can also add to this function a sum over all the

independent observables O. However, it appears that it is
not actually relevant in our analysis, since we consider for
the CI, only one “individual” model at a time, whose con-
tribution is, almost, mesurable in only one doubly polar-
ized cross section. This statement has to be reconsidered
in the case of models involving several “chiralities” (i.e.
several ηε

ij).

The presence of a CI will induce an increase (from 0) of
the χ2 function. If we assume that no effects are detected,
we obtain a limit on Λ at the 95% Confidence Level (CL),
if the χ2 increases, for this Λ, by (1.96)2 [42]5. In the
following all the bounds, which are presented, correspond
to a 95% CL.

3 Definitions of the observables
and Λeq bounds

3.1 Unpolarized case

The “basic” observables are the two unpolarized cross sec-
tions σ− and σ+, (σt ≡ dσt/dQ2). With these two cross
sections we can define the first (unpolarized) charge asym-
metry, which was also considered in [7,9]:

Bo =
σ− − σ+

σ− + σ+
. (5)

Using these observables, with the experimental param-
eters and the χ2 analysis described above, we obtain the
bounds on Λ presented in Table 3.1. For each row, the
relevant observable is mentioned, and ε = +1 (ε = −1)
corresponds to constructive (destructive) interferences.
The conclusions from this first set of results are the fol-
lowings:

– Depending on the lepton type, the cross sections are
sensitive to certain chiralities: σ− (σ+) tests the chi-
ralities LL±, RR± (LR±, RL±). (This confirms our

5 This remark is valid for some Gaussian statistics. At very
high Q2, where the numbers of events are small, we have used
Poisson statistics in agreement with [42]
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Table 3.1. Limits on Λ at 95% CL for the unpolarized case

Λ (TeV) Observable(s) η+
LL η+

RR η+
LR η+

RL η−
LL η−

RR η−
LR η−

RL

e− only σ− 6.2 6.0 2.6 2.8 5.4 5.2 1.8 1.8
e+ only σ+ 3.3 3.4 6.2 6.0 2.6 2.7 5.2 5.0

e− and e+ σ− + σ+ 6.3 6.1 6.2 6.0 5.5 5.3 5.2 5.0
e− and e+ type B Bo 3.1 2.9 4.7 4.3 3.1 2.8 3.8 3.3

expectations from our analysis of the dominant terms
performed in Appendix A). If a non-standard effect is
observed at HERA, the comparison of the two cross
sections σ− and σ+ allows the distinction of the two
classes of chiralities (LL±, RR±) and (LR±, RL±).
Note that unpolarized cross section measurements are
unable to discriminate within each class, except if the
destructive interferences pattern is actually seen,
which seems to be difficult according to the experi-
mental conditions (see next section).

– For constructive interferences we are sensitive to
Λ(η+

ij) ∼ 6 TeV , and to Λ(η−
ij) ∼ 5 TeV for destructive

interferences. See [40] for comparison up to a factor 2 in
integrated Luminosity (i.e. using the scaling law given
in the preceding section for a relevant comparison).

– The compilation of e− and e+ data does not increase
significantly the limits on Λ for a given chirality, but
it allows the test of all the chiralities.

– The measurement of the charge asymmetry Bo does
not give any complementary information.

The behavior of these updated results is analogous to the
those obtained some years ago in [7,9].

3.2 One-spin case

The “basic” observables are the four single polarized cross
sections σ−

− , σ+
− and σ−

+ , σ+
+ , (σλe

t ≡ dσλe
t /dQ2). These

four cross sections allow the definition of two “pure” spin
asymmetries, which are PV (i.e. non-zero for PV interac-
tions):

AL(e−) =
σ−

− − σ+
−

σ−
− + σ+

−
and AL(e+) =

σ−
+ − σ+

+

σ−
+ + σ+

+
, (6)

and four charge asymmetries, two by two independent:

B1
1 =

σ−
− − σ−

+

σ−
− + σ−

+
and B2

1 =
σ+

− − σ+
+

σ+
− + σ+

+
, (7)

B3
1 =

σ−
− − σ+

+

σ−
− + σ+

+
and B4

1 =
σ+

− − σ−
+

σ+
− + σ−

+
. (8)

The lower index 1 indicates that only one beam is polar-
ized. These asymmetries have been already defined in [7,
9]. In fact, we can construct two other charge asymmetries
that involve more than two independent cross sections,

but only the following one appears to have an interesting
discovery potential:

B5
1 =

σ−
− − σ+

− + σ−
+ − σ+

+

σ−
− + σ+

− + σ−
+ + σ+

+
. (9)

Concerning the Λ bounds, from the χ2 analysis we have
obtained the results presented in Table 3.2.
Some comments are in order:
– The charge asymmetries B1

1 and B3
1 do not appear

in the last row of Table 3.2, which indicates that their
sensitivity to CI are reduced in comparison to the other
asymmetries.

– The Λ bounds are much lower than in the unpolarized
analysis, in particular for the LL± chirality.

– We find a smaller difference (for Λ limit) between the
two conditions of constructive and destructive inter-
ferences than in the unpolarized case.
From a “discovery potential” point of view, we con-

clude that the analysis of one-spin asymmetries, defined
when lepton polarization is available, is less efficient than
an unpolarized analysis. Such a conclusion has already
been given in [9,44]. However, if a new physics effect is de-
tected, the analysis of one-spin asymmetries will be very
useful to obtain some crucial information on the chirality
structure of the new interaction [7,9]. This will be demon-
strated in the next section for the two-spin case, since it is
more powerful than the one-spin case. Indeed, for models
with some “complex” chiral structure (i.e. involving sev-
eral chiralities simultaneously), some cancellations may
occur, which reduce considerably the “analysing poten-
tial” of the one-spin asymmetries. The interested reader
could consult [7,9] to see the behavior of the different one-
spin asymmetries.

3.3 Two-spin case

The “basic” observables are the eight doubly polarized
cross sections σ−−

− , σ++
− , σ−+

− , σ+−
− and σ−−

+ , σ++
+ , σ−+

+ ,

σ+−
+ , (σλeλp

t ≡ dσt
λeλp/dQ2).

We can construct twelve “pure” spin asymmetries in-
volving two cross sections only. It turns out that the ones
which have the greatest “analysing power” are the two PV
spin asymmetries:

APV
LL (e−) =

σ−−
− − σ++

−
σ−−

− + σ++
−

and

APV
LL (e+) =

σ−−
+ − σ++

+

σ−−
+ + σ++

+
. (10)
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Table 3.2. Limits on Λ at 95% CL for the one-spin case. For the charge asymmetries Bn
1 (last

row) the exponent n, which characterizes the involved asymmetry, is also indicated for each corre-
sponding Λ limit value

Λ (TeV) Observable(s) η+
LL η+

RR η+
LR η+

RL η−
LL η−

RR η−
LR η−

RL

e− only AL(e−) 4.6 5.6 2.2 3.0 4.2 5.2 2.0 2.6
e+ only AL(e+) 2.8 3.5 4.4 5.6 2.0 3.0 4.0 5.1

e− and e+ type A AL(e−) + AL(e+) 4.7 5.7 4.4 5.6 4.3 5.3 4.0 5.1
e− and e+ type B Bn

1 4.35 5.62 5.62 5.44 4.05 5.32 5.12 4.74

Table 3.3. Limits on Λ at 95% CL for the two-spin case. The label “PV ” corresponds to the asymmetry ĀPV
LL

Λ (TeV) Observable(s) η+
LL η+

RR η+
LR η+

RL η−
LL η−

RR η−
LR η−

RL

e− only An
2 (e−) 5.5PV 6.0PV 3.15 3.4P V 5.4PV 5.8PV 2.95 3.1P V

e+ only An
2 (e+) 3.64 3.9P V 5.3PV 6.0PV 3.54 3.6P V 5.1PV 5.8PV

e− and e+ type A An
2 (e−)+An

2 (e+) 5.7 6.2 5.4 6.1 5.6 6.0 5.2 6.0
e− and e+ type B Bn

2 5.54 6.13 6.02 6.01 5.54 5.93 5.72 5.51

e− and e+ type A APC
2 4.61 4.42 4.64 4.33 4.81 4.62 4.84 4.53

Of course, if the new interaction is PC, these two asym-
metries are irrelevant. Therefore, it is interesting to study
the “discovery potential” of the PC two-spin asymmetries.
In addition, they could be important to disentangle the
properties of a new interaction having a more complex
chiral stucture than the individual models only. These PC
asymmetries, all independent, are defined by:

A1
2 =

σ−−
− − σ−+

−
σ−−

− + σ−+
−

, A2
2 =

σ++
− − σ+−

−
σ++

− + σ+−
−

, (11)

A3
2 =

σ−−
+ − σ−+

+

σ−−
+ + σ−+

+
, A4

2 =
σ++

+ − σ+−
+

σ++
+ + σ+−

+
. (12)

We see that they involve the cross sections with pro-
ton spin flip only. This could be particularly interesting
to minimize systematic errors. Moreover, we notice that
A2

2 and A4
2 are the spin asymmetries (usually called A‖),

which are, in general, used to extract the polarized struc-
ture function g1. Three other spin asymmetries are of par-
ticular interest:

ĀPV
LL (e−) =

σ−+
− − σ+−

−
σ−+

− + σ+−
−

,

ĀPV
LL (e+) =

σ−+
+ − σ+−

+

σ−+
+ + σ+−

+
,

A5
2 =

σ++
− − σ−+

−
σ++

− + σ−+
−

. (13)

Now, we want to introduce, among the large number of
charge asymmetries that can be defined, the ones which
will have the largest discovery potential in the present
analysis:

B1
2 =

σ−+
− − σ−−

+

σ−+
− + σ−−

+
, B2

2 =
σ++

− − σ++
+

σ++
− + σ++

+
, (14)

B3
2 =

σ−−
− − σ++

− + σ+−
+ − σ−+

+

σ−−
− + σ++

− + σ+−
+ + σ−+

+
,

B4
2 =

σ−−
− − σ++

− + σ−−
+ − σ++

+

σ−−
− + σ++

− + σ−−
+ + σ++

+
. (15)

The bounds on Λ from these different two-spin asym-
metries are presented in Table 3.3. We have to recall that
these limits are strongly dependent on the systematic er-
rors assumed for the asymmetries, and we refer to the dis-
cussion presented in Sect. 2 concerning the expectations
for ∆Osyst/O and the corresponding dependence for the
different sets of asymmetries.

The results have the following properties:

– For constructive interferences the limits are at the
same level for RR+ and RL+ models and slightly lower
for LL+ and LR+ models than the ones obtained from
the unpolarized analysis. For destructive interferences
the bounds are better. Roughly, we find that the lim-
its are comparable in magnitude to the unpolarized
case, and then, far better than for the one-spin case.
This result is drastically different than the one ob-
tained for quark-quark CI studies for jet production in
hadron-hadron collisions. In this case, we found that
spin asymmetries studies have a much greater discov-
ery potential than unpolarized cross sections studies
[38]. This fact is directly correlated to the huge sys-
tematic errors associated to any unpolarized jet cross
sections.

– The differences between the two conditions of con-
structive and destructive interferences are reduced
again, but we have still Λ(η+

ij) > Λ(η−
ij).

– Information on the chiral structure of the new interac-
tion could be obtained, and this, with a better sensi-
tivity than for the one-spin case. This analysis is the
aim of the following section.
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Fig. 1. Spin asymmetries APV
LL (e−) and APV

LL (e+). SM predictions (plain) and contact interactions for Λ = 4 TeV , the relevant
chiralities are given in the figure. Chiralities which are too close to the SM are omitted

4 Chiral structure analysis

In this section we propose a strategy of analysis in order
to obtain some precise information on the chiral structure
of an eventual new interaction, and on the nature of the
interferences with the SM (i.e. sign of ε).

In a first step, for simplicity, we consider only the indi-
vidual models. Some remarks on the models with a more
complicated structure will be given in a following subsec-
tion. The curves are given for Λ = 4 TeV , in connection
with the possible HERA anomaly.

We have seen in the preceding section that the unpo-
larized cross sections are sensitive to two classes of chi-
ralities, depending on the electric charge of the colliding
lepton:
σ− is sensitive to (LL±,RR±) and σ+ to (LR±,RL±).
Here, it is necessary to run into the two channels (e−p and
e+p) in order to cover all the possible chiralities. More-
over, experimentally in order to obtain the value of ε, we
need to identify the destructive interference pattern, which
could be feasible if Λ is small and the integrated luminos-
ity very high. At HERA, with Ltot = 1 fb−1, Λ < 3.5 TeV
is required, a case which is already excluded by Drell-Yan
process analysis at the Tevatron [5].

Consequently, we cannot go further than the sepa-
ration of the two classes (LL±,RR±)-(LR±,RL±) from
unpolarized cross sections measurements. The analysis of
the different spin asymmetries allows a clear separation of
the different individual models. We will illustrate this fact
with the two-spin asymmetries.

4.1 Two-spin case

The first spin asymmetries to consider are the PV ones
APV

LL (e−) and APV
LL (e+), which give the strongest con-

straints on Λ. They are represented on Fig. 1.
The behavior of these asymmetries is in perfect agree-

ment with the expectations from the studies of their dom-
inant terms, performed in Appendix A, which indicate for
the numerator of the asymmetries:

num[APV
LL (e−) ] ' ε K (+η + η′) u+ , (16)

num[APV
LL (e+) ] ' ε K (−η + η′) u+ , (17)

where u+ is the u quark distribution for a quark helicity
parallel to that of the parent proton. K = 8πα2/3Q2Λ2

and η and η′ characterize the chiral structure of the CI,
with the convention LL (η = +1, η′ = +1), RR (−1,−1),
LR (+1,−1), RL (−1,+1). Then, we deduce the following
properties:
– Concerning APV

LL (e−), a deviation from the SM expec-
tation allows one to separate the class (LL+, RR−)
(positive deviation) from the class (LL−, RR+) (neg-
ative deviation).

– Similarly, the study of APV
LL (e+) distinguishes (LR+,

RL−) from (LR−, RL+).
– Then the comparison of APV

LL (e−) and APV
LL (e+) allows

one to pin down the origin of the effect coming from
one of these four classes: (LL+, RR−) (LL−, RR+)
(LR+, RL−) (LR−, RL+).

The second step is to study the charge asymmetry B2
2 ,

which is represented on Fig. 2. We consider this asym-
metry because we have seen that it is the one which has
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Fig. 2. Same as Fig. 1 for B2
2

Table 4.1. “Deviation signatures” for the individual models

η+
LL η+

RR η+
LR η+

RL η−
LL η−

RR η−
LR η−

RL

APV
LL (e−) + − 0 0 − + 0 0

APV
LL (e+) 0 0 − + 0 0 + −
B2

2 0 + − 0 0 − + 0

the best discovery potential for LR± models (under the
assumption ∆Bsyst/B = 10 %).
Note that, as for APV

LL (e±), we can also obtain an approx-
imate formula for the numerator of B2

2 :

num[B2
2 ] ' − ε K η(1− η′) u+ . (18)

The properties of this charge asymmetry are the following:
– An effect on B2

2 indicates the class (LR±,RR±). The
direction of the deviation from SM expectations allows
the distinction between (RR+, LR−) for a positive de-
viation, and (RR−, LR+) for a negative one.

– An absence of deviation on B2
2 associated with a non-

standard effect on another observable (APV
LL (e±) in

particular), reveals the presence of the class
(LL±, RL±).

The sum of the information obtained from the three asym-
metries APV

LL (e−), APV
LL (e+) and B2

2 , allows us to identify
the chiral structure and the sign ε of the new interaction
(for the individual models). This can be seen from Ta-
ble 4.1.

In this table +, −, 0 correspond to positive, negative
and “no” deviation from the SM. We see that each model
has a different “deviation signature”, which indicates a
clear identification of the chiral structure for these indi-
vidual models. This identification could be realised up to

Table 4.2. “Deviation signatures” for the models with several
terms

M1 M2 VV AA VA AV
APV

LL (e−) 0 0 0 0 −2ε −2ε
APV

LL (e+) 0 −2ε 0 0 −2ε 2ε
B2

2 −ε −ε 0 2ε 0 2ε

a certain scale, the “identification limit” Λid, which cor-
responds roughly to the lower discovery limit obtained
from APV

LL (e−), APV
LL (e+) and B2

2 . We find (see Table 3.3)
Λid ∼ 5.1 TeV .

4.2 Models with chiral structure
involving several individual terms

In this subsection we do not attempt to realize a gen-
eral study of these models with a more complicated chiral
structure than the individual models. Here, we just want
to remark how the chiral structure of some models with
an extended structure, such as the ones advocated to ex-
plain the possible HERA anomaly, could be constrained
at a general level.

First, we have to note that, when several chiralities
are present simultaneously, some cancellations may occur
in the different asymmetries, which can reduce drastically
their analysing and discovery potentials. However, in gen-
eral, the three PV asymmetries APV

LL (e−), APV
LL (e+) and

B2
2 are sufficient to obtain some valuable information on

the chiral structure of the new interaction. This can be
seen for the different models, advocated to explain the
possible HERA anomaly, which are the following:

– Barger et al. [25] have defined two models: M1: ηε
LR =

ηε
RL and M2: ηε

LR = η−ε
RL , the other ηε

ij coefficients
being set to zero.

– The authors of [17] defined three models: VV: ηε
LL =

ηε
RR = ηε

LR = ηε
RL, AA: ηε

LL = ηε
RR = η−ε

LR = η−ε
RL and

VA: η−ε
LL = ηε

RR = ηε
LR = η−ε

RL. (For completeness, we
consider also the model AV: η−ε

LL = ηε
RR = η−ε

LR = ηε
RL)

Roughly, when we add the contributions of the individual
models for a given asymmetry, we find for M1, for instance,
that we will have no effect for APV

LL (e+) and a “normal”
effect for B2

2 . We mean by “normal” effect, an effect of the
same magnitude as one induced by an individual model
alone. Similarly, we call a “double” effect, a deviation due
to a certain model, which is two times larger than the
one due to an individual model. For instance, for M2, we
will have a double effect for APV

LL (e+) and a normal effect
for B2

2 (see Figs. 1–2). Analogously for the other models,
we naively obtain the “deviation signatures” presented in
Table 4.2.
We find that, in general, the “deviation signatures” are
distinct between these models and also distinct from the
ones of the individual models given in Table 4.1. However,
some ambiguities remain for several models. For instance,
it could be difficult to distinguish between the M2 model
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Fig. 3. Same as Fig. 1 for Parity Conserving asymmetries

and the ηε
LR term alone. Moreover, the VV model does

not give any deviation, since it conserves parity6. It is for
such distinctions that the studies of the different PC spin
asymmetries are needed.

6 In fact, there are some small effects due to Z-CI interfer-
ences, which are sizeable in the high Q2 domain, if Λ is not too
large

Indeed (see Appendix A), it appears that the cross
sections defined with identical helicities (i.e. σλλ

t with λ =
λe = λp) are mainly sensitive to one chirality only. Con-
versely, the cross sections σλ−λ

t are almost insensitive to
new physics. Then if we construct some spin asymmetries
defined with these two types of cross sections, we will ob-
tain some asymmetries that are mainly sensitive to one
chirality only. Such asymmetries correspond to the PC
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asymmetries defined in Sect. 3 (11-12). We recall that we
have found that they are less sensitive to new physics than
the PV asymmetries (see Table 3.3). These four PC asym-
metries are represented for the individual models on Fig. 3.

In conclusion, we deduce from this rough analysis that,
in general, the PV spin asymmetries are sufficient to ob-
tain some crucial information on the chiral structure of
the new interaction, but it is necessary to study the PC
asymmetries in order to disentangle some hidden effects.

4.3 Remarks on the one-spin asymmetries

The procedure described above could be easily adapted
to the one-spin asymmetries. If we remember that the
one-spin cross sections are given in terms of the two-spin
cross sections, we see immediatly that the numerators of
APV

LL (e−), APV
LL (e+) and B2

2 are contained in the numera-
tor of the one-spin asymmetries AL(e−), AL(e+) and B2

1 ,
respectively. Then, the study of these three one-spin asym-
metries is roughly equivalent to that of the three two-spin
asymmetries. However, several facts make this one-spin
analysis less significant:

– The presence in the numerators of the σλ −λ
t cross sec-

tions decreases the discovery potential, in the sense
that the “information” contained in the numerators
are diluted, since these cross sections are weakly sen-
sitive to new physics. This can be understood by the
examination of the ratio of the dominant contributions
of the one-spin to two-spin cross sections, given by (see
Appendix A):

σλe
t

σ
λeλp

t

' u/2
u+ = 1− ∆u

2u+ < 1 since ∆u > 0 . (19)

This is confirmed by the results presented in Tables 3.2
and 3.3, where we see that the one-spin asymmetries
are sensitive to CI for some energy scales smaller by
roughly 1 TeV in comparison to the sensitivity of the
two-spin asymmetries.

– We have at hand a smaller number of spin and charge
asymmetries in comparison to the two-spin case. In
particular, we cannot define the Parity Conserving
asymmetries A1−4

2 . As a result, if the chiral structure
of the new interaction is complex, and if some cancel-
lations occur between the different individual terms,
we can lose some important information on this chiral
structure7 !

5 Conclusions

– The HERA collider, with a high integrated luminosity
(Ltot = 1 fb−1), could give some strong bounds on the

7 One can argue that a fitting procedure to the data, combin-
ing unpolarized and singly polarized observables, will constrain
all the different chiralities [45]. However, the arguments pre-
sented here indicate that the fitting procedure in the one-spin
case will be less sensitive to new physics than in the two-spin
case, which will result in weaker constraints

energy scale of a possible new CI. For constructive in-
terferences the scale for Λ is of the order of 6 TeV , and
for destructive interferences we find Λ ∼ 5 TeV . The
availability of polarized leptons and protons beams will
not increase significantly these bounds, except for de-
structive interferences. When only lepton polarization
is available, the sensitivity is strongly reduced, the lim-
its decreasing by roughly 1 TeV .

– In contrast to the analysis that can be performed for
unpolarized collisions, the studies of several spin and
charge asymmetries defined in a polarized context can
give some crucial information on the chiral structure
of the new interaction. The nature, constructive or de-
structive, of the interferences with photon exchange
can also be disentangled. It appears that the asymme-
tries defined for doubly polarized collisions are more
well-suited for this chiral structure analysis than the
asymmetries defined with lepton polarization only. In
any case, the availability of electron plus positron
beams is mandatory, in order to cover all the possi-
ble chiralities.

– This analysis has assumed a universality for u and d
quarks contributions (ηu

ij = ηd
ij). However, in a proton,

the u-quark distribution is dominant. Consequently,
the results presented here essentially constrain the
presence of a new interaction in the electron-up-quark
sector. To constrain an electron-down-quark new in-
teraction, the isospin symmetry indicates that the pro-
tons have to be replaced by neutrons, so one should use
electron-He3 collisions, an option which is also under
consideration at HERA [15].

– In this paper we concentrate on the presence of some
new CIs. However, there are some equivalences be-
tween such CIs and the exchange of some new Lep-
toquarks or Rp/ -squarks. It is well-known [24] that
such bosons have to be chiral (i.e. with PV couplings)
to evade the present experimental constraints. Then,
the general results on the chiral structure analysis pre-
sented here, could be applied to these new bosons, if
they have an accessible mass, at HERA, since, in this
case, they will induce some important effects in the
different PV spin asymmetries. These questions will
be analyzed in a forthcoming paper [46].
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A Formulas

We present in this appendix, the set of formulas necessary
to calculate the doubly polarized cross sections, the spin
and charge asymmetries involved in the present analysis
and, finally, the dominant contributions coming from the
presence of a new CI.

A.1 Cross sections

• Process

The singly polarized cross sections are given in [7,8]. Here,
we give the cross sections in the (s, t, u) notations.

The collisions between charged leptons and protons, in
the neutral current channel, correspond to the process:
e± p −→ e± X, whose cross section is given by:

σt
λeλp ≡ dσt

dQ2

λeλp

=
∑

q

∫ xmax

xmin

dx
∑
λq

dσ̂t

dt̂

λeλq

q
λq

λp
(x, Q2),(A.1)

where λe, λp and λq are the helicities of the charged lep-
ton, proton and parton (quark or antiquark), respectively.
The label t = ± of σt corresponds to the electric charge
of the colliding lepton.

∑
q represent the sum over all

the quark and antiquark flavors present inside the pro-
ton. Concerning the kinematical variables, let PN , Pl and
Pl′ be the momentum of the proton, the incoming lepton
and the scattered lepton. If Pq = x PN is the momentum
of the parton carrying the momentum fraction x of the
nucleon, the subprocess variables ŝ, t̂ and û are given by:

ŝ = (Pq + Pl)2 ' +2PqPl = x 2 PNPl = x s , (A.2)

t̂ = (Pl − Pl′)2 = t = −Q2 , (A.3)

û = (Pq − Pl′)2 ' −2 PqPl′

= x u = −x(1− y) s , (A.4)

where the usual variable y is defined by y = PN (Pl −
Pl′)/PNPl = Q2/xs. The boundary condition x ≤ 1 im-
plies y ≥ Q2/s. However, experimentally the y variable is
constrained in the range [28]: yexp

min = 0.01 and yexp
max = 0.8,

but one is hoping to reach in the future [29]: yexp
max = 0.95.

The integration limits are: xmin = Q2/s ymax, xmax =
Q2/s ymin with ymin = max(yexp

min, Q2/s), ymax = yexp
max.

In the high Q2 region we have roughly: xmin ' Q2/s,
xmax ' 1.
We denote by q

λq

λp
(x, Q2) the parton distribution for the

parton q inside a proton of helicity λp, with momentum
fraction x and helicity λq, at the energy scale Q2. These
distributions are related to the parallel and anti-parallel

distributions by: q+ = q+
+ = q−

− , q− = q−
+ = q+

−,
which are related to the usual unpolarized and polarized
parton distributions by: q = q+ + q− and ∆q = q+− q−.

• Subprocesses

Using the notations of [47], the cross section of the ele-
mentary subprocess eq→ e q is given by:

dσ̂t

dt̂

λeλq

=
π

ŝ2

∑
α,β

T
λeλq

α,β (et, q) , (A.5)

where T
λeλq

α,β (et, q) is the square matrix element for α and
β boson exchange, or the exchange process replaced by a
CI; q being a quark or an antiquark. The T

λeλq

α,β (et, q) are
given below for α, β = γ, Zand CI. We have omitted the
hat symbol of the variables ŝ, t̂ and û, for clarity.

Subprocess e− q −→ e− q:

Tγγ = 2 e2
q

α2

t2
[ (1 + λeλq) s2 + (1− λeλq) u2 ] , (A.6)

TZZ =
α2

Z

t2Z
[
(
C2

eLC2
qL(1− λe)(1− λq)

+C2
eRC2

qR(1 + λe)(1 + λq)
)

s2

+
(
C2

eLC2
qR(1− λe)(1 + λq)

+C2
eRC2

qL(1 + λe)(1− λq)
)

u2 ] , (A.7)

Tγ Z = − 2 eq
ααZ

ttZ
[ (CeLCqL(1− λe)(1− λq)

+CeRCqR(1 + λe)(1 + λq)) s2

+ (CeLCqR(1− λe)(1 + λq)

+CeRCqL(1 + λe)(1− λq)) u2 ] , (A.8)

TCICI =
1

2Λ4 [ ((1 + ηη′)(1 + λeλq)

+(−η − η′)(λe + λq)) s2

+ ((1− ηη′)(1− λeλq)

+(η − η′)(−λe + λq)) u2 ] , (A.9)

Tγ CI = − ε eq
α

tΛ2 [ ((1 + ηη′)(1 + λeλq)

+(−η − η′)(λe + λq)) s2

+ ((1− ηη′)(1− λeλq)

+(η − η′)(−λe + λq)) u2 ] , (A.10)

TZ CI = ε
αZ

2tZΛ2 [ (CeLCqL(1 + η)

×(1 + η′)(1− λe)(1− λq)

+CeRCqR(1− η)(1− η′)(1 + λe)(1 + λq) ) s2

+(CeLCqR(1 + η)(1− η′)(1− λe)(1 + λq)
+CeRCqL(1− η)(1 + η′)
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×(1 + λe)(1− λq) )u2 ] , (A.11)

where α is the electromagnetic coupling, αZ = α/ sin2 θW

× cos2 θW , and tZ = t−M2
Z . CfL and CfR are the usual

Left-handed and Right-handed couplings of the Z to the
fermion f , given by CfL = If

3 − ef sin2 θW , and CfR =
−ef sin2 θW with If

3 = ±1/2. The parameters η and η′
characterize the chiral structure of the CI with the conven-
tions: LL (η = +1, η′ = +1), RR (−1,−1), LR (+1,−1)
and RL (−1,+1).

Subprocess e+ q −→ e+ q :

The squared matrix elements Tα,β are obtained from the
six preceding equations with the following changes: s←→
u and λe ←→ −λe (equivalent to CeL ←→ CeR and
η ←→ −η).

Subprocess e± q̄ −→ e± q̄ :

The Tα,β are obtained from the ones for e±q scattering
after the transformations: s←→ u and λq ←→ −λq.

The dominant term being Tγ CI (see below), ε = +1 corre-
sponds to constructive interferences since t < 0 and that
in a proton the u-quark, with eu > 0, is dominant.

A.2 Dominant terms

Some general arguments on the dominant effects, due to
the presence of a CI, will allow us to obtain some simple
relations for the cross sections, which in turn will give the
possibility to predict the behavior of the different asym-
metries. For simplicity, we realize these studies with the
doubly differential cross sections dσλeλp/dxdQ2, where the
integration over x does not change the results.

The important point is that we study the events with
the highest energies, namely with some high Q2, x and y.
Then, we can make the following reasonable hypothesis:

– H1 → ŝ2 � û2,
– H2 → u(x, Q2) > d(x, Q2),
– H3 → ∆u(x, Q2) > 0 (and increasing with x, for high

x),
– H4 → q̄(x, Q2)� q(x, Q2).

With H4 the process cross section corresponding to (A.1)
becomes:

σ
λeλp

t ≡ dσ
λeλp

t

dxdQ2 =
∑

q

dσ̂t

dt̂

λeλp

q+(x, Q2)

+
dσ̂t

dt̂

λe−λp

q−(x, Q2) . (A.12)

With H2 we get (σ̂λeλp

t ≡ dσ̂
λeλp

t /dt̂):

σ
λeλp

t ' σ̂
λeλp

t u+(x, Q2) + σ̂
λe−λp

t u−(x, Q2) . (A.13)

For high values of Λ, the squared amplitudes for the CI
(∼ 1/Λ4) are suppressed compared to the interferences

γ CI (∼ 1/Q2Λ2) or Z CI (∼ 1/(Q2 + M2
Z)Λ2). In the

following, for simplicity, we will neglect the interference
term Z CI which is not dominant.

Next, we assume that the dominant terms for the CI come
from the interferences γ CI, given by (A.10). In terms of
the helicities, using H1, we deduce that the dominant ma-
trix elements squared are:

T−−
γ CI (e−) = ε

K

2π
ŝ2 (1 + η)(1 + η′) ,

T++
γ CI (e−) = ε

K

2π
ŝ2 (1− η)(1− η′) ,

T−−
γ CI (e+) = ε

K

2π
ŝ2 (1− η)(1 + η′) ,

T++
γ CI (e+) = ε

K

2π
ŝ2 (1 + η)(1− η′) , (A.14)

where K = 8πα/3Λ2Q2. We find that the dominant cross
sections for the subprocesses are of the form σ̂λλ (λ =
λe = λq). We deduce that the dominant cross sections for
the process are:

σt
λλ ' σ̂λλ

t u+ and σt
λ −λ ' σ̂λλ

t u− . (A.15)

The hypothesis H3 indicates that the dominant process
cross sections are of the form σt

λλ (and not σt
λ−λ), and

they correspond to:

σt
λλ ' σ̂λλ

t u+ =
π

ŝ2 Tλλ
γ CI u+ . (A.16)

We conclude that σ−−
− is sensitive to LL±, σ++

− to RR±,
σ−−

+ to RL± and σ++
+ to LR±.

An immediate consequence is that the unpolarized
cross sections σ− and σ+ are sensitive to (LL±, RR±)
and (LR±, RL±), respectively.
For the one-spin cross sections we get:

σt
λ =

1
2

(σt
λλ + σt

λ−λ) ' 1
2

σ̂λλ
t u (A.17)

The sensitivity to each chirality is trivial. Moreover, the
comparison of this equation with (A.15), indicates that
the two-spin cross sections are more sensitive to the CI
than the one-spin ones, because:

σλ
t

σλλ
t

' u/2
u+ = 1− ∆u

2u+ < 1 since ∆u > 0 . (A.18)

The behavior of the different asymmetries is easily ob-
tainable from the above equations, because it is governed
by its numerator, since the denominators are dominated
by the SM. For instance, we obtain for the asymmetries
considered in the text:

num[APV
LL (e−) ] ' ε K (+η + η′) u+ , (A.19)

num[APV
LL (e+) ] ' ε K (−η + η′) u+ , (A.20)

num[B2
2 ] ' − ε K η(1− η′) u+ , (A.21)
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and for the PC asymmetries (see (A.15)):

num[A1−4
2 ] = σt

λλ − σt
λ−λ ' σ̂λλ

t ∆u , (A.22)

num[A1
2 ] ' ε

K

2
(1 + η)(1 + η′) ∆u , (A.23)

num[A2
2 ] ' ε

K

2
(1− η)(1− η′) ∆u , (A.24)

num[A3
2 ] ' ε

K

2
(1− η)(1 + η′) ∆u , (A.25)

num[A4
2 ] ' ε

K

2
(1 + η)(1− η′) ∆u . (A.26)

Then, APV
LL (e−) is sensitive to (LL±, RR±), APV

LL (e+) to
(LR±, RL±), B2

2 to (RR±, LR±), A1
2 to LL±, A2

2 to RR±,
A3

2 to RL± and A4
2 to LR±.

B “Experimental asymmetries”/definition
of ∆Astat

Experimentally the particle beams are never fully polar-
ized, so we need to introduce some degree of polarization
P . Then, there is a shift between the values of the observ-
able defined theoretically (P = 1) and the one measured
experimentally (P 6= 1). Only in the two cases AL and8

APC
LL is the relation between the two asymmetries (“theo-

retical” and “experimental”) simple, and a suitable redef-
inition of the measured asymmetry makes the situation
clear (see below). In some other cases, such as the dou-
ble PC spin asymmetry A‖ measured in polarized deep
inelastic scattering at low Q2, some relevant assumptions
(parity conservation) allow one to obtain a similar simple
relation (see below). However, in general, we do not have
such simple relationships between the two asymmetries, so
we need a careful treatment, in order to take into account
the degrees of polarization, and to define the statistical
error of the asymmetries correctly.

The goal of this appendix is to show the procedure that
we have used in the present article. This can be used in
polarized hadronic collisions as well. Since it is relatively
technical, we introduce our notations, then, we illustrate
our general procedure on APV

LL , since it is valid for any
spin asymmetries. Finally, we give two examples, which
reproduce the simple relations mentioned above.

B.1 Notations

We denote σλaλb (≡ dσλaλb

dXdY... ) as the cross section corre-
sponding to the process a(λa) b(λb) → X. The basic ob-
servables are: σ++, σ+−, σ−+ and σ−−. They are related

8 APC
LL is defined by APC

LL ≡ ALL =
(σ++ − σ+− + σ−− − σ−+)/(σ++ + σ+− + σ−− + σ−+)

to the one-spin cross sections by σλa 0 = 1
2 ( σλa λb +

σλa −λb ), when only a are polarized, and similarly σ0λb =
1
2 (σλaλb + σ−λaλb), when only b are polarized. The unpo-
larized cross section is:

σ00 =
1
4
(σ−− + σ++ + σ−+ + σ+−) =

1
2
(σ−0 + σ+0)

=
1
2
(σ0− + σ0+) . (B.1)

Concerning the numbers of events, for a particular spin
configuration (λa, λb), we define Nλaλb = Lλaλb × σλaλb .
We make the special choice: Lλaλb = 1

2 Lλa0 = 1
2 L0λb =

1
4 L00, where L00 is the “total” integrated luminosity.
Then we have:

Nλa 0 = Nλa λb + Nλa −λb ,

N0 λb = Nλa λb + N−λa λb , (B.2)

N00 = N−− + N++ + N−+ + N+−

= N−0 + N+0 = N0− + N0+ . (B.3)

Now, if we define an asymmetry by:

A =
N1 − N2

N1 + N2
, (B.4)

its statistical error is [42]:

∆A =

√
1−A2

N1 + N2
=

2
(N1 + N2)2

√
N1N2(N1 + N2)

=
1−A2
√

1−A

1√
2 N1

. (B.5)

B.2 General procedure: example on AP V
LL

Consider the process a b −→ X. Experimentally, we have
a fraction Pa of particles a with helicity λa, and a fraction
1−Pa of unpolarized a particles, which collide with a frac-
tion Pb of particles b with helicity λb, and a fraction 1−Pb

of unpolarized b particles. We obtain the “experimental”
cross section:

σλaλb
exp = Pa Pb σλaλb + Pa (1− Pb) σλa0

+(1− Pa) Pb σ0λb + (1− Pa) (1− Pb) σ00,

=
1
4

(1 + Pa) (1 + Pb) σλaλb

+
1
4

(1− Pa) (1− Pb) σ−λa−λb

+
1
4

(1 + Pa) (1− Pb) σλa−λb

+
1
4

(1− Pa) (1 + Pb) σ−λaλb . (B.6)

In terms of events, replace in the preceding (B.7), σ by
N .
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We mean by “experimental” that the observable (Oexp

with O ≡ σ, A, B ...) is directly dependent on the de-
grees of polarization. In fact, Oexp could correspond, on
the one hand, to a theoretical quantity which takes into
account the expected experimental conditions, or on the
other hand, to a measured quantity in some actual exper-
imental conditions (Oexp ≡ Omeas). The former case is
involved in any phenomenological simulation that intends
to take into account the degrees of polarization, and we
have to use (B.7) to define the statistical error of the theo-
retical asymmetry properly. In the latter case, in order to
reconstruct the number of events which are independent
of the degrees of polarization from the measured number
of events, we will have to use the inverse formula of (B.7):

σλaλb =
1

Pmeas
a Pmeas

b

[
1
4
(1 + Pmeas

a )(1 + Pmeas
b )σλaλb

meas

+
1
4
(1− Pmeas

a )(1− Pmeas
b )σ−λa−λb

meas

1
4

(1 + Pmeas
a ) (1− Pmeas

b ) σλa−λb
meas

−1
4

(1− Pmeas
a ) (1 + Pmeas

b ) σ−λaλb
meas

]
. (B.7)

We insist on the fact that, now, σλaλb is not a cross sec-
tion given by theory, but a cross section constructed from
the measured cross sections to be Pa, Pb independent.

• Example on APV
LL

We begin this example in the framework of phenom-
enological simulations. In this case, Pa and Pb are the
expected degrees of polarization for the beams a and b.
APV

LL and N−−, N++, N−+ and N+− are some quanti-
ties predicted by theory, so, they are Pa, Pb independent.
We call APV

LL (exp) and N−−
exp , N++

exp , N−+
exp and N+−

exp some
theoretical quantities which are Pa, Pb dependent.

We call “theory 1” the strategy which consists of using
as the basic observable APV

LL (exp). In this case, with (B.7),
we have:

APV
LL (exp) =

N−−
exp − N++

exp

N−−
exp + N++

exp
, (B.8)

=
1
2 (Pa+Pb)[N−−−N++]+ 1

2 (Pa−Pb)[N−+−N+−]
1
2 [N−−+N+++N−++N+−]+ 1

2 PaPb[N−−+N++−N−+−N+−] .

(B.9)

From this equation, we see that APV
LL (exp) is not simply

related to APV
LL . It means that, even if APV

LL (exp) is defined
with the (“experimental”) number of events for two spin
configurations, the presence of the degrees of polarization
induces an admixture of the (theoretical) number of events
for the four spin configurations.

However, this asymmetry is well-defined and its statis-
tical error too:

∆APV
LL (exp) =

√
1− (APV

LL (exp))2

N−−
exp + N++

exp
. (B.10)

Now, we call “theory 2” the strategy which consists to use
as the basic observable APV

LL , which is simply defined by:

APV
LL =

N−− −N++

N−− + N++ . (B.11)

Actually, as in [43] for the study of AL, we want APV
LL to

be the basic observable of the analysis. So the question
arises: what is its statistical error ? The answer boils down
to the fact that we want the two methods, theory 1 and
theory 2, to be equivalent, or practically, to have the same
analyzing power (i.e. the same χ2 ∼ (A/∆A)2). Namely,
we require that:

A

∆A
=

Aexp

∆Aexp
. (B.12)

So, we define the statistical error of the theoretical asym-
metry in the following way:

∆APV
LL =

APV
LL

APV
LL (exp)

.∆APV
LL (exp) . (B.13)

Now, if we are in the framework of some experimental
measurements, we have at hand some measured quantities:
Pmeas

a , Pmeas
b , N−−

meas, N++
meas, N−+

meas and N+−
meas. From

these ones, we can construct (using (B.8)) the Pa, Pb in-
dependent number of events N−−, N++, N−+ and N+−.
Then, we call “measure 1” the strategy which consists
to define as the basic observable an asymmetry which is
dependent on the degrees of polarization. In this case, we
have simply:

(
APV

LL (exp)
)
meas

=
N−−

meas −N++
meas

N−−
meas + N++

meas
, (B.14)

(
∆APV

LL (exp)
)
meas

=

√
1− (APV

LL (exp))2meas

N−−
meas + N++

meas
. (B.15)

We have to compare this asymmetry to the one defined in
“theory 1”.

We call “measure 2” the strategy which consists to de-
fine as the basic observable an asymmetry which is inde-
pendent on the degrees of polarization. Then, we construct
APV

LL by the use of (B.8), and we find (see (B.16) on top
of the next page)
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APV
LL =

1
2P meas

a

[
N−−

meas + N−+
meas − N+−

meas − N++
meas

]
+ 1

2P meas
b

[
N−−

meas − N−+
meas + N+−

meas − N++
meas

]
1
2

[
N−−

meas + N−+
meas + N+−

meas + N++
meas

]
+ 1

2P meas
a P meas

b

[
N−−

meas − N−+
meas − N+−

meas + N++
meas

]
=

1
2P meas

a

[
N−0

meas − N+0
meas

]
+ 1

2P meas
b

[
N0−

meas − N0+
meas

]
1
2 N00

meas ( 1 + 1
P meas

a P meas
b

Ameas
LL )

. (B.16)

The associated statistical error is:

∆APV
LL =

APV
LL

(APV
LL (exp))meas

.(∆APV
LL (exp))meas. (B.17)

We have to compare this asymmetry to the one defined in
“theory 2”.

The two procedures, “experimental” (i.e. theory/measure
1: P dependent) and “theoretical” (i.e. theory/measure
2: P independent), are physically equivalent. This remark
is valid for phenomenological simulations and for experi-
mental measurements. We can choose the presentation of
the results that we prefer. In order to present some curves
which are independent of the assumed degrees of polar-
ization, we have to use the strategy that we have called
“theoretical”. We have followed this procedure in this pa-
per. The strategies presented for APV

LL are valid for any
spin asymmetries.

Remark on the APV
LL case :

From (B.9), we have seen that there is no simple rela-
tion between APV

LL (exp) and APV
LL . However, if we make the

crude assumption that ALL = 0 (i.e. PaPbALL = 0 and
1
2 N00 = N−− + N++ = N−+ + N+−), and if we assume
P = Pa = Pb, then we obtain the simple relation:

APV
LL (exp) = P APV

LL −→ ∆APV
LL

=
1
P

√
1− P 2 APV 2

LL

N−− + N++ . (B.18)

We have suppressed the label “meas”, because when there
is a “simple relation” between the two asymmetries, the
distinction between phenomenological simulations and ex-
perimental measurements, is no longer required, since they
obey the same equation (here (B.18)), even if physically
the distinction between the two conditions still exists.

Finally, note that (B.18) is obtained under a crude as-
sumption, but it exhibits the interesting property that the
statistical errors of the PV spin asymmetries are ∼ 1/P .
This has been noted already in [38], and in [48], where the
formula (B.17) has also been derived.

B.3 Connections with some usual spin asymmetries

The procedure described above is valid for any spin asym-
metries. However, if for a certain asymmetry (say A), there

is a “simple relation” between the theoretical definition
(i.e. A, P independent) and the experimental definition
(i.e. Aexp, P dependent), it appears that the statistical er-
ror of the theoretical asymmetry has a simple expression.
We exemplify this fact for the two usual asymmetries ALL

and A‖.

• ALL

The P dependent experimental asymmetry is defined by:

Aexp
LL =

N++
exp − N+−

exp − N−+
exp + N−−

exp

N++
exp + N+−

exp + N−+
exp + N−−

exp
, (B.19)

associated to the statistical error:

∆Aexp
LL =

√
1−Aexp 2

LL

N++
exp + N+−

exp + N−+
exp + N−−

exp
. (B.20)

Now, using the formula of correspondence (B.7), we obtain
the well-known simple formula: Aexp

LL = Pa Pb ALL.
Next, we deduce the statistical error for the theoretical

ALL:

∆ALL =
1

Pa Pb
.∆Aexp

LL =
1

PaPb

√
1−Aexp 2

LL

N00
exp

=
1

PaPb

√
1− P 2

a P 2
b A 2

LL

N00 . (B.21)

It is clear from this example, that it is no longer nec-
essary to distinguish the fact that we are performing a
phenomenological analysis or analysing some experimen-
tal measurements. The equations are the same for the two
cases (for the latter case and using our notations, we just
have to add the subscript meas to all the preceding equa-
tions).

• A‖

In general, in polarized deep inelastic scattering, rather
than analysing the spin asymmetry ALL it is usual to
study its reduced expression A‖(≡ A2

2 or A4
2).

The P dependent experimental asymmetry is defined
by:

A‖(exp) =
N++

exp − N+−
exp

N++
exp + N+−

exp
, (B.22)

associated to the statistical error:

∆A‖(exp) =

√
1−A2

‖(exp)

N++
exp + N+−

exp
. (B.23)
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In terms of the “theoretical” number of events, we ob-
tain:

A‖(exp) (B.24)

=

1
2 (1+Pa) Pb

[
N++ − N+−

]
− 1

2 (1−Pa) Pb

[
N−− − N−+

]
1
2 (1+Pa)

[
N++ + N+−

]
+ 1

2 (1−Pa)
[

N−− + N−+
] .

We see, now, that there is no longer a simple relation
between A‖(exp) and A‖. However, if we assume parity
conservation (i.e. N++ = N−− and N+− = N−+), we
recover the well-known formula: A‖(exp) = Pa Pb A‖,
giving for the “theoretical” statistical error:

∆A‖ ' 1
Pa Pb

.∆A‖(exp)

=
1

Pa Pb

√
1− P 2

a P 2
b A2

‖
N++ + N+− . (B.25)

If we do not assume parity conservation, (B.25) is no
longer valid, and we have to use the procedure presented
for APV

LL .
Finally, we have used a similar procedure in the one-

spin case.
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